
1



Version Notes
Version No. Pages Date Revised By Notes

1.0 Total: YYYY-MM-D
D

Zapmore, Auditor1 Audit Draft

Audit Notes
Audit Date YYYY-MM-DD - YYYY-MM-DD

Auditor/Auditors Auditor1, Auditor2

Auditor/Auditors Contact Information contact@obeliskauditing.com

Notes Specified code and contracts are audited for
security flaws.
UI/UX (website), logic, team, and tokenomics are
not audited.

Audit Report Number OB5XXXXXXXX

Disclaimer
This audit is not financial, investment, or any other kind of advice and is for informational
purposes only. This report is not a substitute for doing your own research and due diligence.
Obelisk is not responsible or liable for any loss, damage, or otherwise caused by reliance on this
report for any purpose. Obelisk has based this audit report solely on the information provided
by the audited party and on facts that existed before or during the audit being conducted.
Obelisk is not responsible for any outcome, including changes done to the contract/contracts
after the audit was published. This audit is fully objective and only discerns what the contract is
saying without adding any opinion to it. The audit is paid by the project but neither the auditors
nor Obelisk has any other connection to the project and has no obligations other than to publish
an objective report. Obelisk will always publish its findings regardless of the outcome of the
findings. The audit only covers the subject areas detailed in this report and unless specifically
stated, nothing else has been audited. Obelisk assumes that the provided information and
material were not altered, suppressed, or misleading. This report is published by Obelisk, and
Obelisk has sole ownership of this report. Use of this report for any reason other than for
informational purposes on the subjects reviewed in this report including the use of any part of
this report is prohibited without the express written consent of Obelisk. In instances where an
auditor or team member has a personal connection with the audited project, that auditor or
team member will be excluded from viewing or impacting any internal communication regarding
the specific audit.

2 / 33



Obelisk Auditing
Defi is a relatively new concept but has seen exponential growth to a point where there is a
multitude of new projects created every day. In a fast-paced world like this, there will also be an
enormous amount of scams. The scams have become so elaborate that it’s hard for the common
investor to trust a project, even though it could be legit. We saw a need for creating high-quality
audits at a fast phase to keep up with the constantly expanding market. With the Obelisk stamp
of approval, a legitimate project can easily grow its user base exponentially in a world where
trust means everything. Obelisk Auditing consists of a group of security experts that specialize in
security and structural operations, with previous work experience from among other things,
PricewaterhouseCoopers. All our audits will always be conducted by at least two independent
auditors for maximum security and professionalism.

As a comprehensive security firm, Obelisk provides all kinds of audits and project assistance.

Audit Information
The auditors always conducted a manual visual inspection of the code to find security flaws that
automatic tests would not find. Comprehensive tests are also conducted in a specific test
environment that utilizes exact copies of the published contract.

While conducting the audit, the Obelisk security team uses best practices to ensure that the
reviewed contracts are thoroughly examined against all angles of attack. This is done by
evaluating the codebase and whether it gives rise to significant risks. During the audit, Obelisk
assesses the risks and assigns a risk level to each section together with an explanatory comment.
Take note that the comments from the project team are their opinion and not the opinion of
Obelisk.

3 / 33



Table of Contents
Version Notes 2

Audit Notes 2

Disclaimer 2

Obelisk Auditing 3

Audit Information 3

Project Information 6

Audit of T-Node 2 7
Summary Table 8

Code Analysis 8
On-Chain Analysis 8

Findings 9
Code Analysis 9

Owner Can Withdraw Deposited Assets And Rewards 9
Depositing For Another Account Spends Their Token 10
No Limit For Protocol Values 11
External Dependency 13
Use Safe Transfer 14
Rewards Not Allocated If Last Reward Was Over 20 Weeks Ago 15
365 Days Will Cause Offset 17
Division Before Multiplication 18
Overall And User Checkpoint Updated Simultaneously 19
Addresses Are Hard Coded 20
Constants Using Testnet Addresses 21
Missing Zero Checks 22
No Events Emitted For Changes To Protocol Values 23
Block Rate Assumed Constant 24

On-Chain Analysis 25
Not Analyzed Yet 25

External Addresses 26
Externally Owned Accounts 26

Owner 26
External Contracts 27

Some Vault 27
External Tokens 28

Wrapped Ether 28

Appendix A - Reviewed Documents 29
Deployed Contracts 29
Libraries And Interfaces 29
Revisions 29

4 / 33



Imported Contracts 29

Appendix B - Risk Ratings 30

Appendix C - Finding Statuses 30

Appendix D - Glossary 31
Contract Structure 31
Security Concepts 31

Appendix E - Audit Procedure 32

5 / 33



Project Information
Name

Description

Website

Contact

Contact information @XXXX on TG

Token Name(s) N/A

Token Short N/A

Contract(s) See Appendix A

Code Language Solidity

Chain Polygon / BSC

6 / 33



Audit of T-Node 2
The main takeaway will be added here after the audit is completed and the
final draft is created.

Obelisk was commissioned by XXXX on the XXXX th of XXXX 2022 to conduct a
comprehensive audit of XXXX’ contracts. The following audit was conducted between
the XXXXth of XXXX 2022 and the XXXXth of XXXX 2022. Two of Obelisk's security experts
went through the related contracts manually using industry standards to find if any
vulnerabilities could be exploited either by the project team or users.

*Findings and other relevant info will be updated at audit completion and added here.*

The informational findings are good to know while interacting with the project but don’t
directly damage the project in its current state, hence it’s up to the project team if they
deem that it’s worth solving these issues, however, please take note of them.

The team has not reviewed the UI/UX, logic, team, or tokenomics of the XXXX
project.

This document is a summary of the findings that the auditors found. Please read the full
document for a complete understanding of the audit.

7 / 33



Summary Table

Code Analysis

Finding ID Severity Status

Owner Can Withdraw Deposited
Assets And Rewards

#0001 High Risk Closed

Depositing For Another Account
Spends Their Token

#0002 Medium Risk Closed

No Limit For Protocol Values #0003 Low Risk Closed

External Dependency #0004 Low Risk Closed

Use Safe Transfer #0005 Low Risk Closed

Rewards Not Allocated If Last
Reward Was Over 20 Weeks Ago

#0006 Low Risk Partially Closed

365 Days Will Cause Offset #0007 Informational Open

Division Before Multiplication #0008 Informational Closed

Overall And User Checkpoint
Updated Simultaneously

#0009 Informational Open

Addresses Are Hard Coded #0010 Informational Closed

Constants Using Testnet
Addresses

#0011 Informational Closed

Missing Zero Checks #0012 Informational Closed

No Events Emitted For Changes
To Protocol Values

#0013 Informational Closed

Block Rate Assumed Constant #0014 Informational Open

On-Chain Analysis

Finding ID Severity Status

- - - Open

8 / 33



Findings

Code Analysis

Owner Can Withdraw Deposited Assets And Rewards

FINDING ID #0001

SEVERITY High Risk

STATUS Open

LOCATION Vault.sol -> 217-219

DESCRIPTION The emergencyTransferTokens() function allows the Owner
to withdraw any token from the contract, including the
deposited token and the reward token.

RECOMMENDATION Add a require statement that prohibits the withdrawal of
the deposited and reward token.

RESOLUTION The project team implemented the recommended
changes.

9 / 33



Depositing For Another Account Spends Their Token

FINDING ID #0002

SEVERITY Medium Risk

STATUS Closed

LOCATION Vault.sol -> 131-141

DESCRIPTION Function depositFor() is used to deposit for another
account.

The intuitive way to implement this functionality, is to
transfer token from the caller's address to the contract,
and increase the balance of the target account.

In this implementation though, the caller is using the
target's address tokens to deposit for them.

That could be abused in order to move someone's tokens
without their approval (In case they have approved the
Vault.sol contract to spend their tokens).

RECOMMENDATION Instead of transfering TOKEN from the account address,
transfer it from the caller's address.

RESOLUTION The function has been removed.

10 / 33



No Limit For Protocol Values

FINDING ID #0003

SEVERITY Low Risk

STATUS Open

LOCATION fee-distributor.vy -> 103-109

LOCATION fee-distributor.vy -> 346-351

LOCATION fee-distributor.vy -> 393-397

LOCATION Vault.sol -> 66-69

11 / 33



LOCATION Vault.sol -> 165-175

DESCRIPTION fee_unit and feeUnit can be set arbitrarily high, potentially
leading to users claiming 0 rewards.

RECOMMENDATION Add an upper limit to the value.

RESOLUTION The project team implemented the recommended
changes.

12 / 33



External Dependency

FINDING ID #0004

SEVERITY Low Risk

STATUS Closed

LOCATION Vault.sol -> 159-163

LOCATION Vault.sol -> 165-175

DESCRIPTION The .getReserves() external call might fail and return 0,
resulting in division by zero. This will result in users being
unable to claim any rewards.

RECOMMENDATION Use a default fee value to safeguard against this.

RESOLUTION The project team implemented the recommended
changes.

13 / 33



Use Safe Transfer

FINDING ID #0005

SEVERITY Low Risk

STATUS Closed

LOCATION ● fee-distributor.vy -> 350: assert ERC20(token).transfer(_addr,
amount)

● fee-distributor.vy -> 351: assert
ERC20(token).transfer(self.treasury, self.fee_unit)

● fee-distributor.vy -> 397: assert ERC20(token).transfer(addr,
amount)

● fee-distributor.vy -> 402: assert
ERC20(token).transfer(self.treasury, total_fee)

● fee-distributor.vy -> 418:
ERC20(_coin).transferFrom(msg.sender, self, amount)

● fee-distributor.vy -> 471: assert
ERC20(token).transfer(self.emergency_return,
ERC20(token).balanceOf(self))

● veTnode.vy -> 378: assert ERC20(self.token).transferFrom(_addr,
self, _value)

● veTnode.vy -> 513: assert ERC20(self.token).transfer(msg.sender,
value)

DESCRIPTION Direct transfer functions are called.

RECOMMENDATION Use safe transfer functions. These safe transfer function
are used to catch when a transfer fails as well as unusual
token behaviour.

RESOLUTION The project team implemented a low level safe transfer
call that ensures a successful transfer.

The low level calls could be moved to new functions
instead of using duplicated code.

14 / 33



Rewards Not Allocated If Last Reward Was Over 20 Weeks Ago

FINDING ID #0006

SEVERITY Low Risk

STATUS Partially Closed

LOCATION fee-distributor.vy -> 132-146

DESCRIPTION The tokens per week are not allocated correctly if the
number of weeks to reward will exceed 20 weeks.

Note that the calculation logic of the tokens_per_week is
highly inconsistent. For example, some of the branches
will never be executed.

RECOMMENDATION Consolidate the reward distribution logic and increase the
bounds or make sure function is called every 20 weeks.

RESOLUTION The range has been updated to 30 weeks.
Vyper does not allow flexible ranged loops which might
cause contracts to run into gas limits. The project team
has to balance between lower gas estimation vs loss of
rewards when the contract is highly inactive.

Project team comment:
“This function must be called more than once per week
based on its logic. If it’s not called over 30 weeks, this
means the project has been stopped for over half a year”

15 / 33



16 / 33



365 Days Will Cause Offset

FINDING ID #0007

SEVERITY Informational

STATUS Open

LOCATION veTnode.vy -> 86

DESCRIPTION Since there is a different number of days in leap years, this
will cause an offset.

RECOMMENDATION Keep this in mind when designing the front-end.

RESOLUTION Project team comment:
“Will consider it in frontend.”

17 / 33



Division Before Multiplication

FINDING ID #0008

SEVERITY Informational

STATUS Closed

LOCATION veTnode.vy -> 251-256

DESCRIPTION The calculations noted use mixed orders of multiplication
and division.

This may cause rounding errors, resulting in reverted
transactions or miscalculations in general.

RECOMMENDATION Change the calculations to first multiply, then divide.

RESOLUTION The multiplication is now done in a correct order to avoid
rounding errors.

18 / 33



Overall And User Checkpoint Updated Simultaneously

FINDING ID #0009

SEVERITY Informational

STATUS Open

LOCATION veTnode.vy -> 235

DESCRIPTION The veTnode.vy contract updates the overall and user
checkpoints at the same time. This leads to complex logic
which may cause unpredictable behaviour.

RECOMMENDATION Separate and simplify for these systems.

RESOLUTION Project team comment:
“Will consider it.”

19 / 33



Addresses Are Hard Coded

FINDING ID #0010

SEVERITY Informational

STATUS Closed

LOCATION Vault.sol -> 21-23

DESCRIPTION The noted addresses are hard coded.

RECOMMENDATION Add parameters to the constructor to allow for more
flexible deployment.

RESOLUTION The project team implemented the recommended
changes.

20 / 33



Constants Using Testnet Addresses

FINDING ID #0011

SEVERITY Informational

STATUS Closed

LOCATION Vault.sol -> 21-23

DESCRIPTION The addresses above are from Binance Smart Chain Public
Testnet.

RECOMMENDATION Replace them with the mainnet addresses.

RESOLUTION Hard coded addresses are removed.

21 / 33



Missing Zero Checks

FINDING ID #0012

SEVERITY Informational

STATUS Closed

LOCATION ● fee-distributor.vy -> 74-81: def __init__(_voting_escrow:
address,_start_time: uint256,_token: address,_admin:
address,_emergency_return: address,_treasury: address):

● fee-distributor.vy -> 112: def setTreasury(_treasury: address):`
● Vault.sol -> 52-56: c̀onstructor(address _token, address

_treasury) {
● Vault.sol -> 58: function setDistribution(address _distribution)

external onlyOwner {
● Vault.sol -> 62 function setTreasury(address _treasury) external

onlyOwner {
● veTnode.vy -> 119 def __init__(token_addr: address, _name:

String[64], _symbol: String[32], _version: String[32]):

DESCRIPTION The aforementioned functions can set addresses to zero
address. Zero addresses may cause incorrect contract
behavior.

RECOMMENDATION Add a check to ensure contract values are never set to an
invalid zero address.

RESOLUTION The project team implemented the recommended
changes.

22 / 33



No Events Emitted For Changes To Protocol Values

FINDING ID #0013

SEVERITY Informational

STATUS Closed

LOCATION ● Vault.sol -> 58-60: function setDistribution(address _distribution)
external onlyOwner

● Vault.sol -> 62-64: function setTreasury(address _treasury)
external onlyOwner

● fee-distributor.vy -> 103-109: def setFeeUnit(_fee_unit: uint256)
● fee-distributor.vy -> 111-118: def setTreasury(_treasury:

address)

DESCRIPTION Functions that change important variables should emit
events such that users can more easily monitor the
change.

RECOMMENDATION Emit events from these functions.

RESOLUTION The project team implemented the recommended
changes.

23 / 33



Block Rate Assumed Constant

FINDING ID #0014

SEVERITY Informational

STATUS Open

LOCATION veTnode.vy -> 600-611

LOCATION veTnode.vy -> 672-681

DESCRIPTION The calculation of a timestamp for a given block number is
done by interpolating between the values in saved Point
objects. This assumes that the rate of blocks is constant.

RECOMMENDATION Be aware that the block timestamp may differ when
designing the front-end or associated contracts.

RESOLUTION Project team comment:
“Will consider it in frontend.”

24 / 33



On-Chain Analysis

Not Analyzed Yet

25 / 33



External Addresses

Externally Owned Accounts
Owner

ACCOUNT Address

USAGE 0x123456…
Contract.owner - Variable

IMPACT ● receives elevated permissions as owner, operator, or other

26 / 33



External Contracts
These contracts are not part of the audit scope.

Some Vault

ADDRESS ETH - 0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2

USAGE 0x123456…
SomeContract.Vault - Constant

IMPACT ● ERC20 Token

27 / 33

https://etherscan.io/token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2


External Tokens
These contracts are not part of the audit scope.

Wrapped Ether

ADDRESS ETH - 0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2

USAGE 0x123456…
SomeContract.WETH - Constant

IMPACT ● ERC20 Token

28 / 33

https://etherscan.io/token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2


Appendix A - Reviewed Documents

Deployed Contracts

Document Address

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Libraries And Interfaces

Revisions

Revision 1 Hash

Imported Contracts

Contracts Version

29 / 33



Appendix B - Risk Ratings

Risk Description

High Risk Security risks that are almost certain to lead to impairment
or loss of funds. Projects are advised to fix as soon as
possible.

Medium Risk Security risks that are very likely to lead to impairment or
loss of funds with limited impact. Projects are advised to fix
as soon as possible.

Low Risk Security risks that can lead to damage to the protocol.
Projects are advised to fix. Issues with this rating might be
used in an exploit with other issues to cause significant
damage.

Informational Noteworthy information. Issues may include code
conventions, missing or conflicting information, gas
optimizations, and other advisories.

Appendix C - Finding Statuses

Closed Contracts were modified to permanently resolve the finding.

Mitigated The finding was resolved on-chain. The issue may require
monitoring, for example in the case of a time lock.

Partially Closed Contracts were modified to partially fix the issue

Partially Mitigated The finding was resolved by project specific methods which
cannot be verified on chain. Examples include compounding
at a given frequency, or the use of a multisig wallet.

Open The finding was not addressed.

30 / 33



Appendix D - Glossary

Contract Structure
Contract: An address with which provides functionality to users and other contracts.
They are implemented in code and deployed to the blockchain.
Protocol: A system of contracts which work together.
Stakeholders: The users, operators, owners, and other participants of a contract.

Security Concepts
Bug: A defect in the contract code.
Exploit: A chain of events involving bugs, vulnerabilities, or other security risks which
damages a protocol.
Funds: Tokens deposited by users or other stakeholders into a protocol.
Impairment: The loss of functionality in a contract or protocol.
Security risk: A circumstance that may result in harm to the stakeholders of a protocol.
Examples include vulnerabilities in the code, bugs, excessive permissions, missing
timelock, etc.
Vulnerability: A vulnerability is a flaw that allows an attacker to potentially cause harm
to the stakeholders of a contract. They may occur in a contract’s code, design, or
deployed state on the blockchain.

31 / 33



Appendix E - Audit Procedure
A typical Obelisk audit uses a combination of the three following methods:

Manual analysis consists of a direct inspection of the contracts to identify any security
issues. Obelisk auditors use their experience in software development to spot
vulnerabilities. Their familiarity with common contracts allows them to identify a wide
range of issues in both forked contracts as well as original code.

Static analysis is software analysis of the contracts. Such analysis is called “static” as it
examines the code outside of a runtime environment. Static analysis is a powerful tool
used by auditors to identify subtle issues and to verify the results of manual analysis.

On-chain analysis is the audit of the contracts as they are deployed on the block-chain.
This procedure verifies that:

● deployed contracts match those which were audited in manual/static analysis;
● contract values are set to reasonable values;
● contracts are connected so that interdependent contract function correctly;
● and the ability to modify contract values is restricted via a timelock or DAO

mechanism. (We recommend a timelock value of at least 72 hours)

Each obelisk audit is performed by at least two independent auditors who perform their
analysis separately.

After the analysis is complete, the auditors will make recommendations for each issue
based on best practice and industry standards. The project team can then resolve the
issues, and the auditors will verify that the issues have been resolved with no new
issues introduced.

Our auditing method lays a particular focus on the following important concepts:
● Quality code and the use of best practices, industry standards, and thoroughly

tested libraries.
● Testing the contract from different angles to ensure that it works under a

multitude of circumstances.
● Referencing the contracts through databases of common security flaws.

Follow Obelisk Auditing for the Latest Information

ObeliskOrg ObeliskOrg

32 / 33



33 / 33


